Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cell Signal ; 119: 111180, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38642782

RESUMO

CXXC5, a zinc-finger protein, is known for its role in epigenetic regulation via binding to unmethylated CpG islands in gene promoters. As a transcription factor and epigenetic regulator, CXXC5 modulates various signaling processes and acts as a key coordinator. Altered expression or activity of CXXC5 has been linked to various pathological conditions, including tumorigenesis. Despite its known role in cancer, CXXC5's function and mechanism in ovarian cancer are unclear. We analyzed multiple public databases and found that CXXC5 is highly expressed in ovarian cancer, with high expression correlating with poor patient prognosis. We show that CXXC5 expression is regulated by oxygen concentration and is a direct target of HIF1A. CXXC5 is critical for maintaining the proliferative potential of ovarian cancer cells, with knockdown decreasing and overexpression increasing cell proliferation. Loss of CXXC5 led to inactivation of multiple inflammatory signaling pathways, while overexpression activated these pathways. Through in vitro and in vivo experiments, we confirmed ZNF143 and EGR1 as downstream transcription factors of CXXC5, mediating its proliferative potential in ovarian cancer. Our findings suggest that the CXXC5-ZNF143/EGR1 axis forms a network driving ovarian cell proliferation and tumorigenesis, and highlight CXXC5 as a potential therapeutic target for ovarian cancer treatment.

2.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542514

RESUMO

Guanine nucleotide-exchange factors (GEFs) genes play key roles in plant root and pollen tube growth, phytohormone responses, and abiotic stress responses. RopGEF genes in Brassica rapa have not yet been explored. Here, GEF genes were found to be distributed across eight chromosomes in B. rapa and were classified into three subfamilies. Promoter sequence analysis of BrRopGEFs revealed the presence of cis-elements characteristic of BrRopGEF promoters, and these cis-elements play a role in regulating abiotic stress tolerance and stress-related hormone responses. Organ-specific expression profiling demonstrated that BrRopGEFs were ubiquitously expressed in all organs, especially the roots, suggesting that they play a role in diverse biological processes. Gene expression analysis revealed that the expression of BrRopGEF13 was significantly up-regulated under osmotic stress and salt stress. RT-qPCR analysis revealed that the expression of BrRopGEF13 was significantly down-regulated under various types of abiotic stress. Protein-protein interaction (PPI) network analysis revealed interactions between RopGEF11, the homolog of BrRopGEF9, and the VPS34 protein in Arabidopsis thaliana, as well as interactions between AtRopGEF1, the homolog of BrRopGEF13 in Arabidopsis, and the ABI1, HAB1, PP2CA, and CPK4 proteins. VPS34, ABI1, HAB1, PP2CA, and CPK4 have previously been shown to confer resistance to unfavorable environments. Overall, our findings suggest that BrRopGEF9 and BrRopGEF13 play significant roles in regulating abiotic stress tolerance. These findings will aid future studies aimed at clarifying the functional characteristics of BrRopGEFs.


Assuntos
Brassica rapa , Brassica rapa/metabolismo , Estresse Fisiológico/genética , Estresse Salino , Família Multigênica , Perfilação da Expressão Gênica , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
World J Emerg Med ; 15(1): 28-34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188557

RESUMO

BACKGROUND: Streptococcus pneumoniae (S. pneumoniae) is a common pathogen that causes bacterial pneumonia. However, with increasing bacterial resistance, there is an urgent need to develop new drugs to treat S. pneumoniae infections. Nanodefensin with a 14-carbon saturated fatty acid (ND-C14) is a novel nanoantimicrobial peptide designed by modifying myristic acid at the C-terminus of human α-defensin 5 (HD5) via an amide bond. However, it is unclear whether ND-C14 is effective against lung infections caused by S. pneumoniae. METHODS: In vitro, three groups were established, including the control group, and the HD5 and ND-C14 treatment groups. A virtual colony-count assay was used to evaluate the antibacterial activity of HD5 and ND-C14 against S. pneumoniae. The morphological changes of S. pneumoniae treated with HD5 or ND-C14 were observed by scanning electron microscopy. In vivo, mice were divided into sham, vehicle, and ND-C14 treatment groups. Mice in the sham group were treated with 25 µL of phosphate-buffered saline (PBS). Mice in the vehicle and ND-C14 treatment groups were treated with intratracheal instillation of 25 µL of bacterial suspension with 2×108 CFU/mL (total bacterial count: 5×106 CFU), and then the mice were given 25 µL PBS or intratracheally injected with 25 µL of ND-C14 (including 20 µg or 50 µg), respectively. Survival rates were evaluated in the vehicle and ND-C14 treatment groups. Bacterial burden in the blood and bronchoalveolar lavage fluid were counted. The lung histology of the mice was assessed. A propidium iodide uptake assay was used to clarify the destructive effect of ND-C14 against S. pneumoniae. RESULTS: Compared with HD5, ND-C14 had a better bactericidal effect against S. pneumoniae because of its stronger ability to destroy the membrane structure of S. pneumoniae in vitro. In vivo, ND-C14 significantly delayed the death time and improved the survival rate of mice infected with S. pneumoniae. ND-C14 reduced bacterial burden and lung tissue injury. Moreover, ND-C14 had a membrane permeation effect on S. pneumoniae, and its destructive ability increased with increasing ND-C14 concentration. CONCLUSION: The ND-C14 may improve bactericidal effects on S. pneumoniae both in vitro and in vivo.

4.
Cell Death Dis ; 15(1): 33, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212299

RESUMO

Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), and prolonged ER stress leads to cell apoptosis. Despite increasing research in this area, the underlying molecular mechanisms remain unclear. Here, we discover that ER stress upregulates the UPR signaling pathway while downregulating E2F target gene expression and inhibiting the G2/M phase transition. Prolonged ER stress decreases the mRNA levels of E2F2, which specifically regulates the expression of F-Box Protein 5(FBXO5), an F-box protein that functions as an inhibitor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase complex. Depletion of FBXO5 results in increased ER stress-induced apoptosis and decreased expression of proteins related to PERK/IRE1α/ATF6 signaling. Overexpression of FBXO5 wild-type (not its ΔF-box mutant) alleviates apoptosis and the expression of the C/EBP Homologous Protein (CHOP)/ATF. Mechanistically, we find that FBXO5 directly binds to and promotes the ubiquitin-dependent degradation of RNF183, which acts as a ubiquitin E3 ligase in regulating ER stress-induced apoptosis. Reversal of the apoptosis defects caused by FBXO5 deficiency in colorectal cancer cells can be achieved by knocking down RNF183 in FBXO5-deficient cells. Functionally, we observed significant upregulation of FBXO5 in colon cancer tissues, and its silencing suppresses tumor occurrence in vivo. Therefore, our study highlights the critical role of the FBXO5/RNF183 axis in ER stress regulation and identifies a potential therapeutic target for colon cancer treatment.


Assuntos
Neoplasias do Colo , Proteínas F-Box , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Endorribonucleases/metabolismo , Estresse do Retículo Endoplasmático/genética , Resposta a Proteínas não Dobradas , Ubiquitina/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Neoplasias do Colo/genética , Apoptose/genética , Proteínas de Ciclo Celular/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Behav Sci (Basel) ; 13(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38131861

RESUMO

The present study attempted to explore the effects of sleep deprivation on the visual search patterns and hazard response times of taxi drivers when they encountered different types of hazards. A two (driver groups: sleep deprivation or control) × two (hazard types: covert hazard or overt hazard) mixed experimental design was employed. A total of 60 drivers were recruited, half of whom were in the sleep-deprived group and half of whom were in the control group. A validated video-based hazard perception test that either contained covert hazards (12 video clips) or overt hazards (12 video clips) filmed from the drivers' perspective was presented to participants. Participants were instructed to click the left mouse button quickly once they detected a potentially dangerous situation that could lead to an accident. Participants' response time and eye movements relative to the hazards were recorded. The sleep-deprived group had a significantly longer response time and took a longer time to first fixate on covert hazards than the control group, while they had a shorter response time to overt hazards than the control group. The first fixation duration of sleep-deprived drivers was longer than that of the control group for overt hazards, while the duration of the first fixation of the two driver groups was similar for covert hazards. Sleep deprivation affects the visual search patterns and response times to hazards, and the adverse effects of sleep deprivation were worse in relation to covert hazards. The findings have some implications for classifying and evaluating high-risk taxi drivers whose hazard perception ability might be affected by insufficient sleep.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37971459

RESUMO

Objective: To explore the effectiveness of quality control circle (QCC) management model in reducing the error rate of dispensing disposable items. Methods: Our hospital's sterilization supply center implemented QCC management model from May 2021 to December 2021 to compare the error rate of disposable items dispensed before and after the implementation of the QCC activities. Results: The one-time item dispensing error rate was lower after the QCC activities, the order claim error rate, print order error rate, and inventory error rate were also reduced, and the required loading time and delivery time were shortened (P < .05). Conclusion: QCC activities can reduce the error rate of dispensing disposable items, save time, improve efficiency, and enhance clinical satisfaction.

7.
Front Med (Lausanne) ; 10: 1247690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841018

RESUMO

Chemical modifications are a specific and efficient way to regulate the function of biological macromolecules. Among them, RNA molecules exhibit a variety of modifications that play important regulatory roles in various biological processes. More than 170 modifications have been identified in RNA molecules, among which the most common internal modifications include N6-methyladenine (m6A), n1-methyladenosine (m1A), 5-methylcytosine (m5C), and 7-methylguanine nucleotide (m7G). The most widely affected RNA modification is m6A, whose writers, readers, and erasers all have regulatory effects on RNA localization, splicing, translation, and degradation. These functions, in turn, affect RNA functionality and disease development. RNA modifications, especially m6A, play a unique role in renal cell carcinoma disease. In this manuscript, we will focus on the biological roles of m6A in renal diseases such as acute kidney injury, chronic kidney disease, lupus nephritis, diabetic kidney disease, and renal cancer.

8.
J Genet Genomics ; 50(11): 872-882, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37666356

RESUMO

Wheat (Triticum aestivum) is one of the most essential human energy and protein sources. However, wheat production is threatened by devastating fungal diseases such as stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst). Here, we reveal that the alternations in chloroplast lipid profiles and the accumulation of jasmonate (JA) in the necrosis region activate JA signaling and trigger the host defense. The collapse of chloroplasts in the necrosis region results in accumulations of polyunsaturated membrane lipids and the lipid-derived phytohormone JA in transgenic lines of Yr36 that encodes Wheat Kinase START 1 (WKS1), a high-temperature-dependent adult plant resistance protein. WKS1.1, a protein encoded by a full-length splicing variant of WKS1, phosphorylates and enhances the activity of keto-acyl thiolase (KAT-2B), a critical enzyme catalyzing the ß-oxidation reaction in JA biosynthesis. The premature stop mutant, kat-2b, accumulates less JA and shows defects in the host defense against Pst. Conversely, overexpression of KAT-2B results in a higher level of JA and limits the growth of Pst. Moreover, JA inhibits the growth and reduces pustule densities of Pst. This study illustrates the WKS1.1‒KAT-2B‒JA pathway for enhancing wheat defense against fungal pathogens to attenuate yield loss.


Assuntos
Basidiomycota , Triticum , Humanos , Fosforilação , Triticum/genética , Triticum/microbiologia , Necrose , Lipídeos , Basidiomycota/metabolismo , Doenças das Plantas/microbiologia , Resistência à Doença/genética
9.
Nat Plants ; 9(6): 965-977, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277438

RESUMO

The elongation of photosynthesis, or functional staygreen, represents a feasible strategy to propel metabolite flux towards cereal kernels. However, achieving this goal remains a challenge in food crops. Here we report the cloning of wheat CO2 assimilation and kernel enhanced 2 (cake2), the mechanism underlying the photosynthesis advantages and natural alleles amenable to breeding elite varieties. A premature stop mutation in the A-genome copy of the ASPARTIC PROTEASE 1 (APP-A1) gene increased the photosynthesis rate and yield. APP1 bound and degraded PsbO, the protective extrinsic member of photosystem II critical for increasing photosynthesis and yield. Furthermore, a natural polymorphism of the APP-A1 gene in common wheat reduced APP-A1's activity and promoted photosynthesis and grain size and weight. This work demonstrates that the modification of APP1 increases photosynthesis, grain size and yield potentials. The genetic resources could propel photosynthesis and high-yield potentials in elite varieties of tetraploid and hexaploid wheat.


Assuntos
Grão Comestível , Triticum , Grão Comestível/genética , Triticum/genética , Triticum/metabolismo , Melhoramento Vegetal , Fotossíntese , Polimorfismo Genético
10.
Front Cardiovasc Med ; 10: 1113827, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332592

RESUMO

Cardiovascular and cerebrovascular diseases are the number one killer threatening people's life and health, among which cardiovascular thrombotic events are the most common. As the cause of particularly serious cardiovascular events, thrombosis can trigger fatal crises such as acute coronary syndrome (myocardial infarction and unstable angina), cerebral infarction and so on. Circulating monocytes are an important part of innate immunity. Their main physiological functions are phagocytosis, removal of injured and senescent cells and their debris, and development into macrophages and dendritic cells. At the same time, they also participate in the pathophysiological processes of pro-coagulation and anticoagulation. According to recent studies, monocytes have been found to play a significant role in thrombosis and thrombotic diseases of the immune system. In this manuscript, we review the relationship between monocyte subsets and cardiovascular thrombotic events and analyze the role of monocytes in arterial thrombosis and their involvement in intravenous thrombolysis. Finally, we summarize the mechanism and therapeutic regimen of monocyte and thrombosis in hypertension, antiphospholipid syndrome, atherosclerosis, rheumatic heart disease, lower extremity deep venous thrombosis, and diabetic nephropathy.

11.
Acta Pharmacol Sin ; 44(11): 2253-2264, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37311796

RESUMO

Although STAT3 has been reported as a negative regulator of type I interferon (IFN) signaling, the effects of pharmacologically inhibiting STAT3 on innate antiviral immunity are not well known. Capsaicin, approved for the treatment of postherpetic neuralgia and diabetic peripheral nerve pain, is an agonist of transient receptor potential vanilloid subtype 1 (TRPV1), with additional recognized potencies in anticancer, anti-inflammatory, and metabolic diseases. We investigated the effects of capsaicin on viral replication and innate antiviral immune response and discovered that capsaicin dose-dependently inhibited the replication of VSV, EMCV, and H1N1. In VSV-infected mice, pretreatment with capsaicin improved the survival rate and suppressed inflammatory responses accompanied by attenuated VSV replication in the liver, lung, and spleen. The inhibition of viral replication by capsaicin was independent of TRPV1 and occurred mainly at postviral entry steps. We further revealed that capsaicin directly bound to STAT3 protein and selectively promoted its lysosomal degradation. As a result, the negative regulation of STAT3 on the type I IFN response was attenuated, and host resistance to viral infection was enhanced. Our results suggest that capsaicin is a promising small-molecule drug candidate, and offer a feasible pharmacological strategy for strengthening host resistance to viral infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Interferon Tipo I , Infecções por Orthomyxoviridae , Camundongos , Animais , Capsaicina/farmacologia , Fator de Transcrição STAT3 , Transdução de Sinais , Proteínas de Transporte , Replicação Viral
12.
Plant Commun ; 4(5): 100608, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37101397

RESUMO

Reducing losses caused by pathogens is an effective strategy for stabilizing crop yields. Daunting challenges remain in cloning and characterizing genes that inhibit stripe rust, a devastating disease of wheat (Triticum aestivum) caused by Puccinia striiformis f. sp. tritici (Pst). We found that suppression of wheat zeaxanthin epoxidase 1 (ZEP1) increased wheat defense against Pst. We isolated the yellow rust slower 1 (yrs1) mutant of tetraploid wheat in which a premature stop mutation in ZEP1-B underpins the phenotype. Genetic analyses revealed increased H2O2 accumulation in zep1 mutants and demonstrated a correlation between ZEP1 dysfunction and slower Pst growth in wheat. Moreover, wheat kinase START 1.1 (WKS1.1, Yr36) bound, phosphorylated, and suppressed the biochemical activity of ZEP1. A rare natural allele in the hexaploid wheat ZEP1-B promoter reduced its transcription and Pst growth. Our study thus identified a novel suppressor of Pst, characterized its mechanism of action, and revealed beneficial variants for wheat disease control. This work opens the door to stacking wheat ZEP1 variants with other known Pst resistance genes in future breeding programs to enhance wheat tolerance to pathogens.


Assuntos
Peróxido de Hidrogênio , Triticum , Triticum/genética , Triticum/metabolismo , Peróxido de Hidrogênio/metabolismo , Genes de Plantas , Fenótipo
13.
Phytomedicine ; 114: 154786, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37002973

RESUMO

BACKGROUND: The transcription factor NRF2 is a master redox switch that regulates the cellular antioxidant response. However, recent advances have revealed new roles for NRF2, including the regulation of antiviral responses to various viruses, suggesting that pharmacological NRF2-activating agents may be a promising therapeutic drug for viral diseases. Isoliquiritigenin (ISL), a chalcone isolated from liquorice (Glycyrrhizae Radix) root, is reported to be a natural NRF2 agonist and has has antiviral activities against HCV (hepatitis C virus) and IAV (influenza A virus). However, the spectrum of antiviral activity and associated mechanism of ISL against other viruses are not well defined. PURPOSE: This study investigated the antiviral activity and underlying mechanism of ISL against vesicular stomatitis virus (VSV), influenza A virus (H1N1), encephalomyocarditis virus (EMCV), herpes simplex virus type 1 (HSV-1). METHODS: We evaluated the antiviral activity of ISL against VSV, H1N1, EMCV, and HSV-1 using flow cytometry and qRT-PCR analysis. RNA sequencing and bioinformatic analysis were performed to investigate the potential antiviral mechanism of ISL. NRF2 knockout cells were used to investigate whether NRF2 is required for the antiviral activity of ISL. The anti-apoptosis and anti-inflammatory activities of ISL were further measured by counting cell death ratio and assessing proinflammatory cytokines expression in virus-infected cells, respectively. In addition, we evaluated the antiviral effect of ISL in vivo by measuring the survival rate, body weights, histological analysis, viral load, and cytokine expression in VSV-infected mouse model. RESULTS: Our data demonstrated that ISL effectively suppressed VSV, H1N1, HSV-1, and EMCV replication in vitro. The antiviral activity of ISL could be partially impaired in NRF2-deficient cells. Virus-induced cell death and proinflammatory cytokines were repressed by ISL. Finally, we showed that ISL treatment protected mice against VSV infection by reducing viral titers and suppressing the expression of inflammatory cytokines in vivo. CONCLUSION: These findings suggest that ISL has antiviral and anti-inflammatory effects in virus infections, which are associated with its ability to activate NRF2 signaling, thus indicating that ISL has the potential to serve as an NRF2 agonist in the treatment of viral diseases.


Assuntos
Chalconas , Herpesvirus Humano 1 , Vírus da Influenza A Subtipo H1N1 , Viroses , Vírus , Camundongos , Animais , Chalconas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Vírus/metabolismo , Antivirais/farmacologia , Inflamação , Citocinas , Anti-Inflamatórios/farmacologia , Replicação Viral
14.
Front Aging Neurosci ; 15: 1071803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865410

RESUMO

Physical exercise has been widely identified as a supplementary therapy for Parkinson's disease (PD). Evaluating changes in motor function over long-term periods of exercise and comparing efficacy of various exercise types will enable a better understanding of the effects of exercise on PD. In the current study, a total of 109 studies that covered 14 types of exercise were included in the analyses, enrolling 4,631 PD patients. The results of meta-regression revealed that chronic exercise delays the progression of PD motor symptoms, mobility, and balance decline deterioration, whereas for the non-exercise PD groups, motor function progressively decline. Results from network meta-analyses suggest that dancing is the optimal exercise for general motor symptoms of PD. Furthermore, Nordic walking is the most efficient exercise to mobility and balance performance. The results from network meta-analyses also suggest that Qigong may have specific benefit in improving hand function. The findings of the current study provide further evidence that chronic exercise preserves the progression of motor function decline in PD and suggest that dancing, yoga, multimodal training, Nordic walking, aquatic training, exercise gaming, and Qigong are effective PD exercises. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=276264, identifier: CRD42021276264.

15.
Plant Cell Environ ; 46(6): 1935-1945, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36890722

RESUMO

Wheat (Triticum aestivum L.) is a critical food crop feeding the world, but pathogens threaten its production. Wheat Heat Shock Protein 90.2 (HSP90.2) is a pathogen-inducible molecular chaperone folding nascent preproteins. Here, we used wheat HSP90.2 to isolate clients regulated at the posttranslational level. Tetraploid wheat hsp90.2 knockout mutant was susceptible to powdery mildew, while the HSP90.2 overexpression line was resistant, suggesting that HSP90.2 was essential for wheat resistance against powdery mildew. We next isolated 1500 clients of HSP90.2, which contained a wide variety of clients with different biological classifications. We utilized 2Q2, a nucleotide-binding leucine repeat-rich protein, as a model to investigate the potential of HSP90.2 interactome in fungal resistance. The transgenic line co-suppressing 2Q2 was more susceptible to powdery mildew, suggesting 2Q2 as a novel Pm-resistant gene. The 2Q2 protein resided in chloroplasts, and HSP90.2 played a critical role in the accumulation of 2Q2 in thylakoids. Our data provided over 1500 HSP90.2 clients with a potential regulation at the protein folding process and contributed a nontypical approach to isolate pathogenesis-related proteins.


Assuntos
Ascomicetos , Triticum , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/fisiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia
16.
J Med Virol ; 95(3): e28637, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36892175

RESUMO

Increasing evidence suggests that natural antisense transcriptional lncRNAs regulate their adjacent coding genes to mediate diverse aspects of biology. Bioinformatics analysis of the previously identified antiviral gene ZNFX1 revealed neighboring lncRNA ZFAS1 transcribed on the opposite strand from ZNFX1. Whether ZFAS1 exerts antiviral function via regulating the dsRNA sensor ZNFX1 is unknown. Here we found that ZFAS1 was upregulated by RNA and DNA viruses and type I IFNs (IFN-I) dependent on Jak-STAT signaling, similar to the transcription regulation of ZNFX1. Knockdown of endogenous ZFAS1 partially facilitated viral infection, while ZFAS1 overexpression showed opposite effects. In addition, mice were more resistant to VSV infection with the delivery of human ZFAS1. We further observed that ZFAS1 knockdown significantly inhibited IFNB1 expression and IFR3 dimerization, whereas ZFAS1 overexpression positively regulated antiviral innate immune pathways. Mechanistically, ZFAS1 positively regulated ZNFX1 expression and antiviral function by enhancing the protein stability of ZNFX1, thereby establishing a positive feedback loop to enhance antiviral immune activation status. In short, ZFAS1 is a positive regulator of antiviral innate immune response via regulating its neighbor gene ZNFX1, adding new mechanistic insight into lncRNA-mediated regulation of signaling in innate immunity.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação da Expressão Gênica , Imunidade Inata , Antivirais , MicroRNAs/genética , Antígenos de Neoplasias
17.
Nanomaterials (Basel) ; 13(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770439

RESUMO

The high-performance defect-rich MoS2 dominated by sulfur vacancies as well as Mo-rich environments have been extensively studied in many fields, such as nitrogen reduction reactions, hydrogen evolution reactions, as well as sensing devices for NH3, which are attributed to the under-coordinated Mo atoms playing a significant role as catalytic sites in the defect area. In this study, the Mo cluster-MoS2 composite was creatively synthesized through a one-step sulfurization process via H2/H2S gas flow. The Mo6 cluster iodides (MIs) coated on the fluorine-doped tin oxide (FTO) glass substrate via the electrophoretic deposition method (i.e., MI@FTO) were used as a precursor to form a thin-film nanocomposite. Investigations into the structure, reaction mechanism, and NH3 gas sensing performance were carried out in detail. The results indicated that during the gas flowing, the decomposed Mo6 cluster iodides played the role of template and precursor, forming complicated Mo cluster compounds and eventually producing MoS2. These Mo cluster-MoS2 thin-film nanocomposites were fabricated and applied as gas sensors for the first time. It turns out that after the sulfurization process, the response of MI@FTO for NH3 gas increased three times while showing conversion from p-type to n-type semiconductor, which enhances their possibilities for future device applications.

18.
Mitochondrial DNA B Resour ; 8(2): 281-284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845004

RESUMO

Betula pendula purple rain is a variety of Betula pendula that is native to Europe and has important ornamental and economic value. In this study, we sequenced the complete chloroplast genome of B. pendula purple rain. This genome had a typical quadripartite structure with 160,552 bases, including a large single copy (LSC) region of 89,433 bases, a small single copy (SCC) region of 19,007 bases and two inverted repeat (IR) regions of 26,056 bases. The GC content of the chloroplast genome was 36% and contained 124 genes, including 79 protein-coding genes, 8 rRNA genes and 37 tRNA genes. The maximum likelihood phylogenetic analysis of reported chloroplast genomes showed that B. pendula purple rain was most closely related to Betula occidentalis and Betula platyphylla.

19.
Plant Signal Behav ; 18(1): 2163069, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36681901

RESUMO

Platycodon grandiflorus set ornamental, edible, and medicinal plant with broad prospects for further application development. However, there are no reports on the YABBY transcription factor in P. grandiflorus. Identification and analysis of the YABBY gene family of P. grandiflorus using bioinformatics means. Six YABBY genes were identified and divided into five subgroups. Transcriptome data and qRT-PCR were used to analyze the expression patterns of YABBY. YABBY genes exhibited organ-specific patterns in expression in P grandiflorus. Upon salt stress and drought induction, P. grandiflorus presented different morphological and physiological changes with some dynamic changes. Under salt treatment, the YABBY gene family was down-regulated; PgYABBY5 was up-regulated in leaves at 24 h. In drought treatment, PgYABBY1, PgYABBY2, and PgYABBY3 were down-regulated to varying degrees, but PgYABBY3 was significantly up-regulated in the roots. PgYABBY5 was up-regulated gradually after being down-regulated. PgYABBY5 was significantly up-regulated in stem and leaf at 48 h. PgYABBY6 was down-regulated at first and then significantly up-regulated. The dynamic changes of salt stress and drought stress can be regarded as the responses of plants to resist damage. During the whole process of salt and drought stress treatment, the protein content of each tissue part of P grandiflorus changed continuously. At the same time, we found that the promoter region of the PgYABBY gene contains stress-resistant elements, and the regulatory role of YABBY transcription factor in the anti-stress mechanism of P grandiflorus remains to be studied. PgYABBY1, PgYABBY2, and PgYABBY5 may be involved in the regulation of saponins in P. grandiflorus. PgYABBY5 may be involved in the drought resistance mechanism in P. grandiflorus stems and leaves. This study may provide a theoretical basis for studying the regulation of terpenoids by the YABBY transcription factor and its resistance to abiotic stress.


Assuntos
Plantas Medicinais , Platycodon , Platycodon/genética , Platycodon/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética
20.
Oncol Rep ; 49(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36601771

RESUMO

Following the publication of both the above article and a corrigendum (doi: 10.3892/or.2021.8073) that was concerned with the correction of overlapping data panels in Figs. 6 and 7, it has been drawn to the Editors' attention by a concerned reader that the proposed replacement cell invasion assay shown in the revised version of Fig. 7A, and also flow cytometric data featured in Fig. 5A and C, were strikingly similar to data appearing in different form in other articles by different authors. Owing to the fact that these contentious data in the above article had already been published elsewhere, or were already under consideration for publication, prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 34: 2054­2064, 2015; DOI: 10.3892/or.2015.4175].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...